6 research outputs found

    Reviews

    No full text

    Treatment-associated polymorphisms in protease are significantly associated with higher viral load and lower CD4 count in newly diagnosed drug-naive HIV-1 infected patients

    No full text
    Background: The effect of drug resistance transmission on disease progression in the newly infected patient is not well understood. Major drug resistance mutations severely impair viral fitness in a drug free environment, and therefore are expected to revert quickly. Compensatory mutations, often already polymorphic in wild-type viruses, do not tend to revert after transmission. While compensatory mutations increase fitness during treatment, their presence may also modulate viral fitness and virulence in absence of therapy and major resistance mutations. We previously designed a modeling technique that quantifies genotypic footprints of in vivo treatment selective pressure, including both drug resistance mutations and polymorphic compensatory mutations, through the quantitative description of a fitness landscape from virus genetic sequences.Results: Genotypic correlates of viral load and CD4 cell count were evaluated in subtype B sequences from recently diagnosed treatment-naive patients enrolled in the SPREAD programme. The association of surveillance drug resistance mutations, reported compensatory mutations and fitness estimated from drug selective pressure fitness landscapes with baseline viral load and CD4 cell count was evaluated using regression techniques. Protease genotypic variability estimated to increase fitness during treatment was associated with higher viral load and lower CD4 cell counts also in treatment-naive patients, which could primarily be attributed to well-known compensatory mutations at highly polymorphic positions. By contrast, treatment-related mutations in reverse transcriptase could not explain viral load or CD4 cell count variability.Conclusions: These results suggest that polymorphic compensatory mutations in protease, reported to be selected during treatment, may improve the replicative capacity of HIV-1 even in absence of drug selective pressure or major resistance mutations. The presence of this polymorphic variation may either reflect a history of drug selective pressure, i.e. transmission from a treated patient, or merely be a result of diversity in wild-type virus. Our findings suggest that transmitted drug resistance has the potential to contribute to faster disease progression in the newly infected host and to shape the HIV-1 epidemic at a population level. © 2012 Theys et al.; licensee BioMed Central Ltd

    Limited cross-border infections in patients newly diagnosed with HIV in Europe

    No full text
    Background: International travel plays a role in the spread of HIV-1 across Europe. It is, however, not known whether international travel is more important for spread of the epidemic as compared to endogenous infections within single countries. In this study, phylogenetic associations among HIV of newly diagnosed patients were determined across Europe.Results: Data came from the SPREAD programme which collects samples of newly diagnosed patients that are representative for national HIV epidemics. 4260 pol sequences from 25 European countries and Israel collected in 2002-2007 were included.We identified 457 clusters including 1330 persons (31.2% of all patients). The cluster size ranged between 2 and 28. A number of 987 patients (74.2%) were part of a cluster that consisted only of patients originating from the same country. In addition, 135 patients (10.2%) were in a cluster including only individuals from neighboring countries. Finally, 208 patients (15.6%) clustered with individuals from countries without a common border. Clustering with patients from the same country was less prevalent in patients being infected with B subtype (P-value <0.0001), in men who have sex with men (P-value <0.0001), and in recently infected patients (P-value =0.045).Conclusions: Our findings indicate that the transmission of HIV-1 in Europe is predominantly occurring between patients from the same country. This could have implications for HIV-1 transmission prevention programmes. Because infections through travelling between countries is not frequently observed it is important to have good surveillance of the national HIV-1 epidemics. © 2013 Frentz et al.; licensee BioMed Central Ltd

    Increase in transmitted resistance to non-nucleoside reverse transcriptase inhibitors among newly diagnosed HIV-1 infections in Europe

    No full text
    Background: One out of ten newly diagnosed patients in Europe was infected with a virus carrying a drug resistant mutation. We analysed the patterns over time for transmitted drug resistance mutations (TDRM) using data from the European Spread program.Methods: Clinical, epidemiological and virological data from 4317 patients newly diagnosed with HIV-1 infection between 2002 and 2007 were analysed. Patients were enrolled using a pre-defined sampling strategy.Results: The overall prevalence of TDRM in this period was 8.9% (95% CI: 8.1-9.8). Interestingly, significant changes over time in TDRM caused by the different drug classes were found. Whereas nucleoside resistance mutations remained constant at 5%, a significant decline in protease inhibitors resistance mutations was observed, from 3.9% in 2002 to 1.6% in 2007 (p = 0.001). In contrast, resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) doubled from 2.0% in 2002 to 4.1% in 2007 (p = 0.004) with 58% of viral strains carrying a K103N mutation. Phylogenetic analysis showed that these temporal changes could not be explained by large clusters of TDRM.Conclusion: During the years 2002 to 2007 transmitted resistance to NNRTI has doubled to 4% in Europe. The frequent use of NNRTI in first-line regimens and the clinical impact of NNRTI mutations warrants continued monitoring. © 2014 Frentz et al.; licensee BioMed Central Ltd

    Primary resistance to integrase strand-transfer inhibitors in Europe

    No full text
    Objectives: The objective of this study was to define the natural genotypic variation of the HIV-1 integrase gene across Europe for epidemiological surveillance of integrase strand-transfer inhibitor (InSTI) resistance. Methods: This was a multicentre, cross-sectional study within the European SPREAD HIV resistance surveillance programme. A representative set of 300 samples was selected from 1950 naive HIV-positive subjects newly diagnosed in 2006-07. The prevalence of InSTI resistance was evaluated using quality-controlled baseline population sequencing of integrase. Signature raltegravir, elvitegravir and dolutegravir resistance mutations were defined according to the IAS-USA 2014 list. In addition, all integrase substitutions relative to HXB2 were identified, including those with a Stanford HIVdb score=10 to at least one InSTI. To rule out circulation of minority InSTIresistant HIV, 65 samples were selected for 454 integrase sequencing. Results: For the population sequencing analysis, 278 samples were retrieved and successfully analysed. No signature resistance mutations to any of the InSTIswere detected. Eleven (4%) subjects hadmutations at resistance-associated positions with an HIVdb score =10. Of the 56 samples successfully analysed with 454 sequencing, no InSTI signature mutationsweredetected, whereas integrase substitutionswithanHIVdbscore=10were found in8(14.3%) individuals. Conclusions:No signature InSTI-resistant variantswere circulating in Europe before the introduction of InSTIs. However, polymorphisms contributing to InSTI resistancewere not rare. As InSTI use becomes more widespread, continuous surveillance of primary InSTI resistance is warranted. These data will be key to modelling the kinetics of InSTI resistance transmission in Europe in the coming years. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved

    Transmission of HIV drug resistance and the predicted effect on current first-line regimens in Europe

    Get PDF
    Background. Numerous studies have shown that baseline drug resistance patterns may influence the outcome of antiretroviral therapy. Therefore, guidelines recommend drug resistance testing to guide the choice of initial regimen. In addition to optimizing individual patient management, these baseline resistance data enable transmitted drug resistance (TDR) to be surveyed for public health purposes. The SPREAD program systematically collects data to gain insight into TDR occurring in Europe since 2001. Methods. Demographic, clinical, and virological data from 4140 antiretroviral-naive human immunodeficiency virus (HIV)-infected individuals from 26 countries who were newly diagnosed between 2008 and 2010 were analyzed. Evidence of TDR was defined using the WHO list for surveillance of drug resistance mutations. Prevalence of TDR was assessed over time by comparing the results to SPREAD data from 2002 to 2007. Baseline susceptibility to antiretroviral drugs was predicted using the Stanford HIVdb program version 7.0. Results. The overall prevalence of TDR did not change significantly over time and was 8.3% (95% confidence interval, 7.2%-9.5%) in 2008-2010. The most frequent indicators of TDR were nucleoside reverse transcriptase inhibitor (NRTI) mutations (4.5%), followed by nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations (2.9%) and protease inhibitor mutations (2.0%). Baseline mutations were most predictive of reduced susceptibility to initial NNRTI-based regimens: 4.5% and 6.5% of patient isolates were predicted to have resistance to regimens containing efavirenz or rilpivirine, respectively, independent of current NRTI backbones. Conclusions. Although TDR was highest for NRTIs, the impact of baseline drug resistance patterns on susceptibility was largest for NNRTIs. The prevalence of TDR assessed by epidemiological surveys does not clearly indicate to what degree susceptibility to different drug classes is affected
    corecore